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Factorization methods for
structure from motion

By Takeo Kanade and Daniel D. Morris
Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue,

Pittsburgh, PA 15213-3891, USA

In this article we present an overview of factorization methods for recovering struc-
ture and motion from image sequences. We distinguish these methods from general
nonlinear algorithms primarily by their bilinear formulation in motion and shape
parameters. The bilinear formulation makes possible powerful and efficient solu-
tion techniques including singular value decomposition. We show how factorization
methods apply under various affine camera models and under the perspective cam-
era model, and then we review factorization methods for various features including
points, lines, directional point features and line segments. An extension to these
methods enables them to segment and recover motion and shape for multiple inde-
pendently moving objects. Finally, we illustrate the generality of the factorization
methods with two applications outside structure from motion.

Keywords: factorization; bilinear decomposition; Euclidean; affine; perspective

1. Introduction

As we watch the video output from a camera moving in a three-dimensional (3D)
scene, our minds naturally obtain a ‘feeling for’, or estimate of, the motion of the
camera as well as an idea of the geometry of the scene. Humans are well adapted to
recovering geometry and motion from image sequences. It has been a computer vision
goal to perform a similar task: from an image sequence taken by a camera undergoing
unknown motion, extract the 3D shape of the scene as well as the camera motion.
This is called the structure from motion problem.

The main challenge for structure from motion, as in many vision tasks, lies not in
creating a model of the physics of the task, but rather in estimating the parameters
of the model. The image formation processes including the optics of the camera are
well understood and can be accurately modelled such that if the scene geometry and
camera motion are known, the resulting images can be reliably calculated. However,
since it is only the images that are known, solving the structure from motion task
corresponds to inverting the equations modelling image formation to obtain model
parameters. Mathematically this can be well-defined modulo ambiguities, but the
nonlinearity and high sensitivity to parameter variations causes many direct solutions
to be numerically ill-conditioned, or else results in computationally complex nonlinear
approaches with many convergence hurdles.

In this article we discuss a class of algorithms known as factorization methods for
structure from motion. These algorithms depend on the mathematical possibility of
decomposing a set of image measurements into the product of two separate factors:

image sequence ⇔ motion × shape.
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1154 T. Kanade and D. D. Morris

Intuitively the projected images are considered to result from two factors: the relative
motion between the camera and the object and the object shape. These are composed
in a bilinear form such that if either motion or shape is constant, then the image
sequence will be a linear function of the other. The motion parameters refer to all
of those parameters describing the interaction between the camera and the object;
namely the relative orientation and translation of the object and intrinsic camera
calibration parameters. These parameters may vary from image to image in the
sequence, but are the same for all features in a single image. The shape parameters
describe the 3D geometric characteristics of the object and are assumed to remain
constant over the sequence. Typically the 3D coordinates of features on the surface
of the object are used to specify shape.

The factorization method takes advantage of the bilinear formulation to decom-
pose the image measurements into the relevant motion and shape components. This
can be achieved by a number of techniques including singular value decomposition
(SVD) and can be performed much more efficiently and with better convergence
properties than general nonlinear optimizations. The factorization method has been
demonstrated to be a powerful approach to extracting structure and motion from
image sequences.

The factorization method was first introduced by Tomasi & Kanade (1990, 1992)
for the orthographic case. It has since inspired numerous extensions and generaliza-
tions. In this report we review the basic factorization method and its development
along several research directions. Important developments include the extension to
alternate camera models, both affine and perspective, the extension of feature models
from points to lines and to directional point feature models, a multi-body case and
the creation of alternative solution techniques. There have also been applications of
factorization methods in other domains.

2. The factorization method: fundamentals

The use of features is a key factor in making the factorization and other structure
from motion methods tractable and general. It is assumed that there exists a set
of features on the object that are tracked throughout the image sequence providing
a complete set of feature coordinates in all images. This assumption enables the
method to focus on geometric considerations and ignore all of the image processing
tasks. Object shape is interpreted to mean the 3D location of the features with
respect to a reference frame affixed to the object. Object motion is the rotation
and translation of this reference frame with respect to the camera, and the image
sequence means simply the coordinates of the projected features in the images. The
use of features enables factorization methods to be used whenever a feature set is
available, irrespective of object motion, shape or illumination.

The core element of factorization that distinguishes it from similar methods is its
strong dependence on a bilinear formulation of structure and motion. With appropri-
ate choice of coordinates it is possible to encode both affine and perspective camera
projections in the general bilinear form:

wfp = PfMfsp. (2.1)

The feature coordinate vector wfp for image f and feature p is formed as the linear
sum of the product of motion parameters in matrix Mf and shape parameters in
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vector sp weighted with the constant weighting or projection matrix Pf . The pro-
jection and motion parameters will vary across the frames of the image sequence
but are the same for each object feature, whereas the shape parameters will vary
between features but be identical for all frames. In the first stage of factorization
the projection parameters are included in the motion parameters. The bilinear form
then permits a convenient and efficient decomposition of image measurements into
motion and shape.

The other important and distinguishing feature of factorization methods is their
uniform treatment of features and images from a large sequence. Many algorithms
are designed to recover structure from the minimum number of images. Extension
to the multi-image case typically requires partitioning the sequence into subsets,
solving the subsets and combining the results, or else selecting a ‘special image’ (or
subset of images) to which all other images are compared in obtaining motion and
shape. The partitioning approach suffers from not applying consistent constraints
across the sequence, and the ‘special image’ approach results in high sensitivity to
noise in measurements of that image. Factorization, on the other hand, provides true
batch processing of the images with global application of constraints over all images.
Neither image pairs nor special images are relied on by the algorithm.

Early work on obtaining structure from feature correspondences starting from
Longuet-Higgins (1981) and Tsai & Huang (1984) focused on obtaining camera ori-
entation and object shape from minimal numbers of views. In 1990 Tomasi & Kanade
demonstrated a working scheme for structure from motion for many images and fea-
tures that they called the factorization algorithm. The authors recently learned that
Kontsevich et al . (1987) presented a paper proposing a mathematical formulation
essentially the same as the factorization algorithm. In the remainder of § 3 b we
describe the basic factorization algorithm.

(a) Constructing the equations

We assume that there is a set of P features on an object that are projected into
F images with coordinates {wfp = (ufp, vfp)T | f = 1, . . . , F, p = 1, . . . , P} as illus-
trated in figure 1. Initially we formulate the equations describing feature projection
assuming an orthographic camera model. These equations are further generalized to
other affine models in § 3 a, and to the perspective case in § 3 b.

The primary constraint on the object is its rigidity. All of the object features
can be described by their constant 3D positions in a reference frame affixed to the
object. Each feature has coordinates given by a 3 × 1 vector sp for p = 1, . . . , P .
Object motion is described by a rotation, with matrix Rf , and translation, tf =
(tfx, tfy, tfz)T, of this reference frame with respect to the camera in each image, f .
A feature point p in image f will thus have position sfp = Rfsp + tf with respect to
the camera. Under orthography with the z axis along the optical axis, image feature
wfp is given by

wfp = Mfsp +w′f , (2.2)

where Mf consists of the top two rows of the rotation matrix Rf , and

w′f = (tfx, tfy)T

is the image displacement between the origins of the world reference frame and the
object reference frame. We then choose a coordinate system fixed to the object and
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Figure 1. Feature tracked in an image sequence.

express the features in this new frame by displacing them by w′f to get wo
fp =

ww
fp −w′f . In this object-centred frame equation (2.2) becomes

wo
fp = Mfsp (2.3)

for f = 1, . . . , F , p = 1, . . . , P . By stacking rows and columns, these equations can
be written compactly in the form,

W = MS, (2.4)

where

W =


wo

11 wo
12 · · · wo

1P
wo

21 wo
22 · · · wo

2P
...

...
. . .

...
wo
F1 wo

F2 · · · wo
FP


2F×P

,

M =


M1
M2

...
MF


2F×3

and S =
[
s1 s2 · · · sP

]
3×P .

Equation (2.4) contains the core of the factorization algorithm. It states that the
feature locations in object-centred coordinates can be expressed as the product of a
motion matrix and a shape matrix projected onto the image. The key property of
this equation is the following theorem.

Theorem 2.1. In the ideal case with no corrupting noise, the measurement matrix
W has rank given by

rank(W ) 6 3. (2.5)

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Factorization methods for structure from motion 1157

Proof . This result is evident since M has three columns and the columns of W are
linear combinations of these. It also follows as an extension of the work of Ullman
(1979), who showed that three points and three frames are sufficient to recover shape
and motion under orthography. Here this property is applied to the whole image
sequence. �

(b) Solving the equations

An important reason for the success and popularity of the factorization algorithm
is its convergence to a globally optimum affine solution. We describe here the origi-
nal solution technique proposed by Kontsevich et al . (1987) and Tomasi & Kanade
(1990). Since the rank constraint only applies to the ideal case where feature posi-
tions are measured with no error, when there is noise in the measurement, a norm
squared error can be defined,

ESVD(M,S) = ‖W −MS‖2, (2.6)

where M and S are constrained to be of the form given in equation (2.4). This least
squares approximation can be achieved by performing SVD on the measurement
matrix:

W = UΣV T. (2.7)

We let Σ̃ be equal to the top left 3×3 block of Σ containing the three largest singular
values. These singular values correspond to the principal components of W . Then
selecting U3 and V3 to be the first three columns of U and V respectively, we obtain
the least squares approximation to W given by Ŵ = U3Σ̃V

T
3 . This decomposition

step results in a matrix U3 which measures inter-image differences that are common
for all features, namely the object motion, and a matrix V3 that measures intra-image
structure that is common in all images, namely the object shape.

From here it is simple to factor this into motion and shape matrices. An arbitrary
solution is to choose: M̂ = U3Σ̃

1/2, and Ŝ = Σ̃1/2V T
3 . However, this solution is unique

only up to an affine transformation, since the motion and shape can be transformed
by any 3×3 invertible matrix A, with their product remaining the same: W = M̂Ŝ =
M̂AA−1Ŝ = MS. The Euclidean solution for the orthographic case, which is unique
up to a rotation and reflection, is obtained by finding a transformation A such that
the rows of each Mf in M are orthonormal. Solutions for other affine models are
obtained by imposing the camera projection constraints and the initial orientation
information on the motion matrix as described in § 3.

By using SVD, the factorization algorithm remains numerically stable and is guar-
anteed to converge to the global minimum of ESVD. It thus provides a reliable algo-
rithm for obtaining shape and motion from an image sequence; a major step forward
in structure from motion research.

3. Factorization under various camera models

The first step of the factorization algorithm recovers affine shape and motion. Euclidean
shape and motion are recovered by choosing a camera model and finding the matrix
A such that the motion matrix M = M̂A satisfies this model. This is because M
implicitly incorporates both rotation and projection information. In this section we

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1158 T. Kanade and D. D. Morris

describe various affine camera models used with factorization and give constraint
equations for each. We then turn our attention to the full perspective factorization
recently proposed by Triggs (1996), Sturm & Triggs (1996) and Deguchi (1997).

(a) Affine models

The general affine camera projection model is defined in homogeneous coordinates
by the projection equation:

λw̄fp = PAf s̄p. (3.1)

Here an object point s̄ = (sT, 1)T is projected onto the image plane to point w̄ =
(wT, 1)T by the projection matrix PA. The projection is in the form:

PAf =

p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 p34

 ≡ [Mf 2×3 w′f 2×1
01×3 λ

]
. (3.2)

Restricting consideration to points within the affine subspace not at infinity, equation
(3.1) can be scaled by 1/λ and so can be expressed in the form:

wfp = Mfsp +w′f . (3.3)

Note that up to a choice of origin, w′f , this is precisely the form in which SVD
decomposition obtains motion and shape.

The matrix Mf can be decomposed into a camera calibration matrix and a rotation
matrix in the form:

Mf = KAfRf =
1
zf

[
1 s
0 a

] [
if 1×3
jf 1×3

]
. (3.4)

Here zf is the depth in focal lengths of the object, s is the skew parameter, a is the
aspect ratio, and vectors if and jf are the two top orthonormal rows of a rotation
matrix. With this decomposition we obtain the identity:

MfM
T
f = KAfKA

T
f . (3.5)

In the remainder of this section we reinterpret elements of KAf according to par-
ticular sub-affine camera models. We find matrix A that transforms the recovered
motion, M = M̂A, to satisfy this identity up to a rotation and reflection. The
rotation can be determined by choice of coordinate system, but the reflection is an
inherent ambiguity of the projected affine model.

(i) Orthography

The orthographic camera model has the parameters given by

KAf =
[
1 0
0 1

]
. (3.6)

It is typically a good approximation for imaging when the object thickness and
change in depth between images are small compared to the object’s depth from the
camera. It is in these cases that depth recovery is difficult and may be sensitive to
noise, so an orthographic model is likely to be more reliable than more complicated
models. To recover Euclidean shape with this camera we seek a matrix A that will
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enable Mf = M̂fA to satisfy equation (3.5) for all the images. From this we obtain
the following equations:

M̂fAA
TM̂T

f = KAfKA
T
f =

[
1 0
0 1

]
for f = 1, . . . , F. (3.7)

A linear set of equations are used to obtain Q = AAT as described by Morita &
Kanade (1994), and then Q is split into AAT.† Finally, Euclidean motion and shape
are recovered as M = M̂A and S = A−1S.

(ii) Weak perspective

Weak perspective, also known as scaled orthography, has the following camera
parameters:

KAf =
1
zf

[
1 0
0 1

]
. (3.8)

Weak perspective can be interpreted as an orthographic projection of the object
features onto a plane through its centroid and parallel to the image plane, followed
by a perspective projection of this plane onto the image plane. This perspective
projection of the plane is simply a uniform scaling of the feature coordinates by the
inverse of their distance from the camera measured in focal lengths, here denoted
as 1/zf . Weak perspective thus models the scaling effects caused by depth changes
between images. Hence weak perspective is appropriate for shallow objects making
significant changes in distance from the cameras from image to image. The camera
constraints for obtaining A become

M̂fAA
TM̂T

f = KAfKA
T
f =

1
z2
f

[
1 0
0 1

]
for f = 1, . . . , F. (3.9)

Both the depths zf and the transformation A can be solved for from these equations
as described by Kontsevich et al . (1987) and Poelman (1995).

(iii) Paraperspective

The paraperspective model is another affine model and is a step closer to approxi-
mating perspective projection. Originally introduced by Ohta et al . (1981), it models
the scaling of weak perspective as well as the apparent rotation resulting from an
object moving to the edge of the image. Modelling this effect is useful when the
object being viewed moves across the image. Poelman & Kanade (1994) and Poel-
man (1995) showed how the paraperspective model could be incorporated into the
factorization formulation and derived the constraint equations:

M̂fAA
TM̂T

f =
1
z2
f

[
1 + x2

f xfyf
xfyf 1 + y2

f

]
for f = 1, . . . , F. (3.10)

Here xf and yf are the image coordinates of the centroid of the object with respect
to the centre of the image and so can be measured in each image. It just remains for
A and the depths to be recovered from these equations.

† If the recovered matrix, Q, is not positive definite, it cannot be factored in this form. Fortunately,
for typical image noise, Q is generally positive definite.
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(b) Perspective factorization

When the object thickness is significant compared to its depth from the camera,
affine models become poor approximations to the imaging process and perspective
models should be used. Sturm & Triggs (1996), Triggs (1996) and Deguchi (1997) pro-
posed a generalization of the factorization algorithm to recover motion and shape up
to a projective transformation. Using calibration parameters this can be transformed
into the Euclidean shape. Here we summarize their projective factorization formula-
tion followed by a calibration step to obtain a perspective factorization method.

The general projective camera model is a linear transformation of homogeneous
points in P3 onto points in the plane, P2. Thus it is defined by a 3 × 4 projection
matrix PP that maps object points, s̄ = (sT, s4)T, onto the points in the image plane
w̄ = (wT, w3)T, where these points are described in homogeneous coordinates. This
projection occurs up to an unknown scale factor λfp called the projective depth:

λfpw̄fp = PP f s̄p. (3.11)

Gathering these equations for each point in each image into a measurement matrix
of size 3F × P , we obtain the matrix equation:

W ≡


λ11w̄11 λ12w̄12 · · · λ1P w̄1P
λ21w̄21 λ22w̄22 · · · λ2P w̄2P

...
...

. . .
...

λF1w̄F1 λF2w̄F2 · · · λFP w̄FP

 =


P1
P2
...
PF

 [s̄1 s̄2 · · · s̄P
]
. (3.12)

With the correct projective depths, λfp, the measurement matrix will have at most
rank 4 and can be decomposed using SVD as in the affine case. The key concept here
is to view projective recovery as correctly rescaling the measurement matrix. While
the projective depth for a single point is arbitrary, the projective depths for points
in the same image have fixed ratios, and similarly the projective depths for a single
feature appearing in multiple images will have fixed ratios. Thus the scale factors
in the measurement matrix are only arbitrary up to a scale factor for each triple of
rows, corresponding to features in the same image, and each column, corresponding
to the same point in different images. Hence it is necessary to determine FP −F −P
scale factors in order to correctly rescale W into the form of equation (3.12).

The projective depths can be determined modulo these arbitrary scales from the
fundamental matrices and epipolar lines of features in the images. Sturm & Triggs
(1996) derive the following result relating projective depths for point p in images i
and j:

(Fijw̄jp)λjp = (eij ∧ w̄ip)λip, (3.13)

where Fij is the fundamental matrix and eij is the epipole. In part this is a restate-
ment of the epipolar constraint: that the epipolar line of w̄jp (given by Fijw̄jp) is
the line joining the epipole eij and point w̄ip (here denoted by the join or cross
product of these points, eij ∧ w̄ip). It also says that given the correct projective
depths, these quantities are exactly equal, not just up to a scale factor. Using this
relationship and knowledge of the epipoles and the fundamental matrices, all of the
projective depths can be recovered modulo row and column scalings. The funda-
mental matrices and epipoles can be calculated from pairwise point correspondences
using standard algorithms such as the 8-point algorithm described well by Hartley
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(1995). Sturm & Triggs calculate these matrices along with projective depths by
pairing images sequentially: F12,F23, . . . ,FF−1,F . Calculating the depths by chain-
ing together images can lead to an exponential growth or decrease their size. This
does not change the rank 4 property, but may cause significant round-off errors in
SVD. Since rows and columns are only defined up to scale, they can be judiciously
rescaled around unity.

The second step of factorization, following this rescaling and decomposition, con-
sists of obtaining the Euclidean shape and motion using camera calibration parame-
ters. The recovered projective shape and motion are unique only up to an arbitrary,
invertible, 4× 4 matrix H since:

W = PS = P̂HH−1Ŝ. (3.14)

If we know the camera calibration parameters then H can be obtained. Otherwise a
nonlinear method such as that described by Hartley (1993) could be used to perform
camera calibration from the image sequence and so obtain the Euclidean shape.

Unlike the affine case, not all of the steps of the perspective factorization method
work on all the images during the batch mode. The preprocessing to find epipolar
geometry occurs across images in a pairwise manner. Hence it loses one of the benefits
of affine factorization by not enforcing a globally consistent geometry. If instead of a
sequence of pairwise calculations, the epipolar geometry is estimated by comparing
each image with the first image, this will ensure that the geometry is consistent,
but then one image is arbitrarily selected as a special instance, creating greater
sensitivity to errors. In practical terms, however, assuming that the epipolar geometry
is known may not be a significantly greater assumption than assuming that points
are registered.

4. Factorization with alternative features

(a) Point features

In feature-based structure from motion, points are by far the most popular choice
for features. As one of the most primitive features, point features enjoy many geomet-
ric advantages over other features. Points exist in all dimensions and are invariant
to projective transformations; they remain points when projected onto an image and
when rotated. Points are simple to describe and manipulate mathematically, and
more complicated features can often be compactly described as a collection of point
features. From the practical side, there are difficulties in detecting and registering
points. Points are not measurable by a discrete pixel grid and so are typically defined
by a template or window function. These templates do not have the invariant nature
of point features under projection changes and so inaccuracies are introduced into
the feature detection and registration. Despite this, points are still the feature of
choice for most algorithms.

(b) Line features

Another feature is the line. Lines share the primitive nature of points and invari-
ance under projective transformations. While there are no ideal lines in real images,
straight edges can be naturally modelled as lines, and in many cases can be localized
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more accurately than point features. Hence line features are also attractive primi-
tives for factorization. The main disadvantage of lines compared to points is that
the projection of a line in 3D to a line in the image only identifies a plane on which
the feature lies; whereas the projection of a point in 3D onto a point in the image
identifies a line on which the feature lies. Thus line features provide less constraint
information than point features.

(i) Lines with affine factorization

Quan & Kanade (1996) proposed a factorization algorithm for affine structure from
line feature correspondences. The algorithm operates in four steps to retrieve shape
and motion from a minimum of seven lines in three images. We briefly describe the
algorithm in this section.

A line in R3 passing through a point s0 with direction ds can be described in the
form: s = s0 + λds. Under an affine projection (3.2) this forms an image line,

w = PAs = w0 + λ′dw, (4.1)
where a point on the image line is w0 = Ms0 +w′ and the direction is given by

λ′′dw = Mds. (4.2)
Equation (4.2) relates the measured line directions, dw, to the affine motion, M , and
the 3D line directions ds. Matrix M thus projects line directions in R3 to directions
inR2 up to a scale factor. An alternative interpretation is to considerM as projecting
a point in P2 to a point in P1 using homogeneous coordinates. Thus it has the same
form as the projective equation (3.11) except that it is a 1D camera instead of a 2D
camera. It can be solved in an analogous manner to perspective factorization. First
the measurement matrix is formed:

WD =


λ11du11 λ12du12 · · · λ1Pdu1P
λ21du21 λ22du22 · · · λ2Pdu2P

...
...

. . .
...

λF1duF1 λF2duF2 · · · λFPduFP

 (4.3)

and it is rescaled appropriately. It can then be factored into affine motion and line
directions:

WD = MDDD =


M1
M2

...
MF

 [ds1 ds2 · · · dsP
]
. (4.4)

The second step of the algorithm is to recover the translation vectors tp, and the
third step is to recover points through which the lines pass, xp. Both of these are
described by Quan & Kanade (1996) and can be achieved by solving sets of linear
equations with SVD.

The final step is the conversion from affine results to Euclidean shape and motion.
This is done by applying the constraints for whichever affine camera is being used in
the same way as for point features described in § 3 a. With this algorithm a minimum
seven line directions in three images are needed to recover motion and shape, which
is more than the four point features in three images needed by the point-based affine
factorization. Also shape recovery for lines is typically more sensitive to noise than
for point features.
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(ii) Lines with perspective factorization

There has not yet been a direct extension from affine to perspective factorization
for lines. Sturm & Triggs (1996) proposed an alternate route in which lines are
represented by two points. A pair of points for each line are chosen in the first image
and, using known epipolar geometry, the corresponding point positions on the lines
in the rest of the images are calculated. The projective depths can also be calculated
and then the perspective factorization for points (see § 3 b) can be applied to recover
shape and motion.

As in perspective factorization for points, the epipolar geometry needs to be estab-
lished, and since this is typically calculated from point correspondences, point fea-
tures must be tracked in addition. On a deeper level, however, an important aspect
of line features is lost by converting each into two point features. A line gives a
strong one-dimensional constraint orthogonal to its length and no constraint along
its length. Modelling a line with two point features results in an equal constraint
or weighting along and perpendicular to the line. Thus simply using end-points to
represent lines adds an artificial factor in the least squares that may harm the line
fitting.

(c) Generalized points and line segments

Up to this point, factorization has been viewed as a least squares optimization
algorithm; the configuration that minimizes the norm squared error from equation
(2.6) is deemed the best solution. Poelman (1995) extended this to a weighted least
squares optimization where each image point is given a separate weight so that unre-
liable or occluded points can be given less influence or discarded. The least squares
solution is arbitrary in the sense that many error measures could be used in place of
norm squared error for ESVD, and it is unclear which will give superior results. The
norm square error is chosen mostly for its convenient numerical properties including
the SVD solution of ESVD.

An alternative approach taken by Morris & Kanade (1998) is to make probabilistic
assumptions about the data and then find the maximum likelihood solution. True
feature locations, xfp, are assumed to have known 2D Gaussian probability densities
in the image plane with covariances Cfp around the measured features, wfp:

ρfp(xfp) = kfp exp(−1
2(wfp − xfp)TC−1

fp (wfp − xfp)). (4.5)

Assuming independence this results in a total density function given by the product
of these: ρT =

∏
fp ρfp(xfp). The maximum likelihood solution to this is obtained

by minimizing the cost function, EB, given by

EB =
∑
fp

1
2(wfp − xfp)TC−1

fp (wfp − xfp). (4.6)

If feature position is given by the affine model, xfp = Mfsp, and all features have
unit covariance matrices, then EB and ESVD are equivalent up to scale. This implies
that the original factorization algorithm is the maximum likelihood solution when
feature uncertainty is modelled as having independent, identical Gaussian distribu-
tion. Other choices of covariance matrices are possible permitting the use of arbitrary
Gaussian densities for feature positions. In particular, directional uncertainty of fea-
ture position may be modelled as in figure 2a. The new cost EB can no longer
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Figure 2. (a) Directional feature uncertainty modelling. (b) Line segment modelling with
end-points having large directional uncertainties along line length.

be minimized with SVD, but Morris & Kanade (1998) present an efficient bilinear
algorithm for achieving this and recovering motion and shape.

This generalized point feature model can also be extended to model line segments.
Practical line registration algorithms actually work with line segments which are fit
to edges in the images. The positions of the recovered line end-points may correspond
to different parts of the edge in any given image, but they are restricted to fall within
the physical limits of the object. Thus, by using line segments which correspond to
a particular region of the infinite line, one can extract more constraints than are
available for infinite lines. Line segments can be defined by modelling their end-
points as Gaussian density functions with large uncertainty along the length of the
line and small uncertainty perpendicular to the line, as illustrated in figure 2b. The
same factorization algorithm will thus work with line segments modelled in this way.

Using the generalized point formulation increases the flexibility and accuracy of
factorization and still leverages the bilinear nature of the problem, but it loses the
guarantee of global convergence. The additional flexibility includes the ability to
naturally handle missing features. The original formulation required and iterative
‘hallucination’ scheme by Tomasi & Kanade (1992) to handle missing features, but
this negates much of the gains in the SVD formulation. With generalized features
the a missing feature is given zero probability.

5. Extension to the multi-body case

A common and basic assumption of most structure from motion algorithms is that
features belong to a single rigid object. When there are multiple independently mov-
ing objects in a scene with features tracked on each, the additional challenge becomes
to segment features and then recover object motion and shape. The difficulty intro-
duced by multiple objects (particularly if the number is unknown) is that typically
segmentation depends on object motion estimates and object motion estimation
depends on a prior segmentation of the features. Approaches to solving this cyclic
dilemma have generally relied on recursive clustering techniques such as by Boult &
Brown (1991) and Gear (1994). Costeira & Kanade (1995) showed that this multi-
body problem could be described in a bilinear formulation, and then decomposed
and solved segmentation and recovery of motion and shape at the same time using
a factorization method. Their algorithm, which uses an affine approximation, does
not need to know the number of shapes nor does it involve recursive application.

First, the problem is formulated in a bilinear form. Since individual objects may
have different translations, both rotation and translation must be incorporated in the
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Figure 3. The shape interaction matrix, Q, is transformed into block diagonal form, Q∗, with each
block representing a separate object, in this case three objects. Using the same transformation
T , the columns, cobject

i , of W can be reordered into a segmented form.

motion matrix. This is achieved using homogeneous coordinates for object points:
s̄ = (sT, 1)T, so that the projection equation becomes

wfp =
[
Mf w′f

]
s̄. (5.1)

A measurement matrix, W , analogous to that in equation (2.4) can be formed by
stacking features in rows and columns. The only difference is that since points are not
in object-centred coordinates, the matrix W produced by a single rigid object will
now have a rank of at most 4. When there are multiple rigid objects, the columns of
W , representing features, are from each of the objects and are mixed in an unknown
manner. The rank of W increases with each independently moving rigid object. Let
us assume that r = rank(W ). The goal of segmentation is to permute the columns
of W into the form,

W ∗ =
[
W a W b · · ·] , (5.2)

where each component, W a, W b, etc., is at most rank 4.
The first step of decomposition is to perform SVD on W to obtain W = UΣV T.

We let Vr consist of the first r columns of V . We then form the shape interaction
matrix Q given by

Q = VrV
T
r . (5.3)

The shape interaction matrix captures the structural information of the objects and
its entries are invariant to object translation and rotation. The pth row and pth

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1166 T. Kanade and D. D. Morris

column correspond to the pth feature, sp. Costeira & Kanade (1995) showed that in
the zero noise case, Q can be transformed into a block diagonal form Q∗ by applying
a transform, which here we denote by T , such that

Q∗ = TQTT. (5.4)

T is a square matrix whose columns are a permutation of the identity matrix. Pre-
multiplying by T thus permutes rows of Q, and post-multiplying by TT permutes
columns of Q. An iterative technique described by Costeira & Kanade (1995) is used
to find the transform, T , that results in the block diagonal matrix Q∗ illustrated in
figure 3. The rows and columns of each block in Q∗ identify those features whose
motions in the image sequence are linearly dependent on each other and independent
of other features, and hence are part of the same rigid object.

The effect of post-multiplying Q or W by T is to reorder the respective columns
of Q or W from their initial sequential ordering by feature index to a new segmented
ordering where columns from the same feature are adjacent. Thus the segmented
measurement and shape matrices are obtained as:

W ∗ = WTT

S∗ = STT.

}
(5.5)

Subsequent to this the standard factorization procedure must be applied in an anal-
ogous way to that described in § 3.

The multi-body factorization method performs a bilinear decomposition into motion
and shape components and so can eliminate the independent motions of the objects.
Then using only the linear dependences of rows and columns in the shape interaction
matrix, the object features can be segmented. The elimination of motion leads to
a simpler segmentation algorithm than that of Gear (1994), who iteratively scaled
and permuted columns of the measurement matrix based on linear dependences to
obtain segmentation. A weakness of the factorization-based algorithm is that analysis
is performed assuming zero noise. With noise, thresholds and other approximations
must be introduced.

6. Factorization in other domains

There are other situations outside the structure from motion domain that can be
formulated as a bilinear decomposition and the factorization paradigm may be a
powerful tool for tackling the problems. Here we describe two such problems.

(a) Force/torque sensor calibration

Multi-axis force and torque sensing devices are used in applications such as haptic
interfaces. They are designed to convert a force and/or torque into an electrical
signal. Figure 4 illustrates a simple two degree of freedom force sensor in which the
four strain gauges measure bending of the cantilever along approximately orthogonal
directions. The device requires calibration because of sensitivities of strain gauges
are different and they may not be placed precisely 90◦ apart. Calibration typically
requires applying a force and measuring it and the response, and then repeating this
in many directions. The transformation equation is defined as

Cz = m, (6.1)
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Figure 4. Two degree of freedom force sensor.

for a vector m containing force and torque components, vector z containing sensor
output, and calibration matrix C. The sensor shown in figure 4 only measures forces
and so here m contains just force components. The equation can be expressed as

[
c11 c12 c13 c14
c21 c22 c23 c24

]
z1
z2
z3
z4

 =
[
mx

my

]
≡ mo

[
sin θ
cos θ

]
. (6.2)

A least squares solution for the calibration parameters can easily be formulated given
multiple corresponding mi and zi vectors. The main drawback with this approach is
that the applied force vector, mi = mo

[
sin θi cos θi

]T, must be known. The mag-
nitude of the force, mo, for multiple measurements can easily be made constant by
suspending a known weight from the tip of the force sensor. However, the direction,
θi, of the force must be painstakingly acquired for each electronic measurement of
zi.

Voyles et al . (1997) showed that the calibration task can be recast in a bilinear
form, and then solved using the factorization technique. Equation (6.1) is restated
in the form,

zT
i = mT

i S, (6.3)

for the ith measurement, and where C is the pseudo-inverse of S. With n measure-
ments this equation can be stacked to form a matrix equation:

Z = MS, (6.4)

where

Z =

z
T
1
...
zT
n

 and M =

m
T
1

...
mT
n

 . (6.5)

We assume here only that the sensor data Z are available, and that the magnitude
of the force components, mo, is constant and known. The key advantage with this
approach is that the directions, θi, need not be measured. This equation is thus anal-
ogous to bilinear camera equation (2.4) and can be solved using SVD decomposition.
The necessary requirements for this to be a useful least squares solution technique is
that the rank of Z be less than the number of columns, and that there is a tractable
technique to determine matrix A that removes the ambiguity inherent in the solu-
tion: MS = M̂A−1AŜ. Voyles et al . (1997) show how these conditions are met in
their force/torque sensor domain.
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Figure 5. Experimental arrangement to model surface reflectance properties of an object.

The work of Voyles et al . can be seen as a recasting of the problem from the linear
domain, which needed careful measurements of force data, to a bilinear problem in
which both force/torque and calibration parameters are calculated. This makes the
task of performing measurements much simpler and faster, and at the same time they
report comparable or even slightly improved results using the factorization method.

(b) Object colour modelling from image sequences

Colour image sequences taken by a fixed camera and moving light source can be
used to recover the surface reflectance properties of an object and surface orientation
of the object. Sato & Ikeuchi (1995) and Sato (1997) present a carefully performed
experiment in which a single light source illuminates an object from multiple points
along a circular trajectory as illustrated in figure 5. Images are taken from a fixed
camera.

The red, green and blue (RGB) components are extracted for each object pixel in
each image. A measurement matrix is formed from the RGB components for a single
pixel and its corresponding pixels in all the images:

M =

R1 G1 B1
...

...
...

Rn Gn Bn

 (6.6)

for n images. Sato & Ikeuchi (1995) derive the following decomposition of this matrix
into two matrices,

M = GK, (6.7)

where G is a n× 2 geometry matrix and K is a 2× 3 colour matrix. The geometry
matrix, which contains surface normal information, identifies the relative contribu-
tion of diffuse and specular reflectance to the total reflection. Its form is determined
using a Lambertian model for diffuse reflection components and a simplified Torrence
Sparrow model for specular reflection components. The colour matrix contains the
RGB intensities of the diffuse and specular reflection.

The decomposition in equation (6.7) could be solved by first finding one of the
matrices G or K, and then obtaining the least squares solution for the other, or it
could be decomposed using the factorization method. Sato & Ikeuchi (1995) follow
the former approach, using alternative techniques to obtain K and solving for G with
linear least squares method. They could have used SVD to obtain the best rank 2
approximation to M , and then decomposed it into Ĝ and K̂ which are defined up

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


Factorization methods for structure from motion 1169

100 0 100 200
0

20

40

60

80

100

Blue
Green
Red

Angle (deg)

In
te

ns
ity

100 50 0 50 100 150
0

0.2

0.4

0.6

0.8

1 Specular
Diffuse

Angle (deg)
RGB  RGB

0

20

40

60

80

100

Diffuse Specular

(c)(b)(a)

Figure 6. The measurement matrix M contains the intensity of the RGB components of the
reflected light for a single pixel as a function of illumination angle. It is decomposed into two
matrices M = GK: where the geometry matrix, G, contains the relative intensities of diffuse and
specular components for each angle, and the colour matrix, K, contains the RGB components
for the diffuse and specular reflectance.

to a 2× 2 invertible such that G = ĜA and K = A−1K̂. The correct transformation
A is determined by applying geometric or colour constraints in an analogous way to
that described in § 3. Figure 6 shows a synthetic example of the RGB components
of a single pixel and their decomposition into the geometry and colour matrices.

Whether a linear least squares or a bilinear decomposition approach is better
depends on the availability of information describing the recovered components. If
one of the two components is easily and accurately determined by alternate means,
then the linear least squares may be best. However, if neither components are accu-
rately known and there are sufficient constraints that can be applied on one or both
of the components, then the factorization method may be the simpler and more
accurate approach.

7. Summary

The factorization method works in several steps. First the equations must be for-
mulated in a bilinear form. This is achieved for the affine case either by working
in an object-based coordinate system or by using homogeneous coordinates. In the
perspective case it is necessary to find a rescaling of the homogeneous coordinates in
order to formulate the matrix equation. The decomposition then produces only the
affine or projective shape and motion. The next step consisted of imposing, and pos-
sibly recovering, calibration and orientation constraints to obtain Euclidean motion.

Since its inception in the late 1980s, the factorization method has proven to
be a powerful approach for the structure from motion problem. The factorization
method has performance improvements over direct nonlinear methods, with guaran-
teed global convergence for SVD calculations and rapid convergence in other bilinear
formulations. Its reliability is also due to uniformly applying constraints, such as
the rigidity constraint, over all features and images, and avoiding the use of special
images.

Finally, factorization methods have found application in areas beyond structure
from motion where a bilinear decomposition into two components can be formulated.
Constraint information on the recovered components is then used to transform these
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components into the desired form for the problem. These methods have much greater
power and flexibility than direct linear methods.
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Discussion

R. Martin (University of Wales, UK ). Even if Professor Kanade had perfect track-
ing, how would he deal with points that are not present in all frames in the factor-
ization method, for example, if they are occluded in some frames?

T. Kanade. In the original factorization we actually go block by block: so create a
big matrix and find out the biggest block first; and then do the factorization; and
once you do that then you can extend the block; what you have to do is to extend
one column or row by filling in with the values which are not there by using the linear
dependency properties; and repeat this process. This idea, in fact, is used for another
extension of factorization, sequential factorization. The criticism is, quite reasonably,
that the original factorization method is a sort of a batch method; you have to
observe all the images and then do motion and shape recovery. Instead, the sequential
factorization solves the SVD for the data from the first several images to construct a
subspace. If everything is perfect, you’re basically done. But in reality not everything
is perfect. So the newer information from more images can improve those subspace
axes. Now, in order to do that, presumably you have to redo SVD for a bigger set
of observations, but note that SVD computation itself is an iterative procedure. In
particular we can use the so-called power method that computes only the first three
or four top eigenvectors, which is exactly what we need for the factorization method,
and moreover the power method itself is an iterative method. Therefore, you can
fold adding new images, i.e. using more rows of the measurement matrix into the
iterative power method of SVD computation. That’s sequential factorization. And
it turns out, actually, that it’s faster than doing the SVD for the whole matrix, so
even for the batch factorization we use this method as a computational procedure.

H. C. Longuet-Higgins (Laboratory of Experimental Psychology, University of
Sussex, Brighton, UK ). How did Professor Kanade set about moving from scaled
orthography and paraperspective projections to the perspective case?

T. Kanade. Extensions to the perspective case were studied by Triggs in Greno-
ble and Deguchi in Tokyo. In the perspective case, the measurement matrix includes
unknown perspective depths which are different from feature to feature. Their values,
at least their relative values to each other, have to be determined first, before fac-
torizing the matrix. And the method of determining the relative perspective depths
used by Triggs and Deguchi relies on epipolar geometry between a chain of pairs of
images. Then the decomposition of W to M and S proceeds as in the orthographic
case. In other words, the perspective factorization, at this moment, is a two-step
process, and the first step uses information only image-pair wise, not as a whole. So,
it does not embody the full feature of the factorization method, that is, use of all of
the data or constraints at the same time. Is that a fair statement, Bill?

W. Triggs (INRIA, France). Yes. In theory we could feed the fundamental matrices
and trifocal tensors of all possible pairs and triplets of images into the perspective
depth estimation, but in practice that is overkill, so we just use a chain of pairs. But
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in a sense, only the depth estimation step is really ‘reconstruction’; the factorization
just consolidates a 3D structure that is already implicit, and ‘reads it off’ in 3D
coordinates. In the affine case you have an implicit reconstruction as soon as you stack
the image coordinates into a big vector, as shown, for example, by affine transfer.

T. Kanade. As I said, I wish that people could come up with a perspective fac-
torization method that had the feature of the single-step all-data utilization. I don’t
know whether it is possible or not.

P. H. S. Torr (Department of Engineering Science, University of Oxford, UK ). I
implemented the work described in this paper at ICCV95, on multibody factoriza-
tion. I found that the method was very vulnerable to noise and outliers within the
data. Has Professor Kanade any comment on this?

T. Kanade. This is fairly true. It seems that the multi-body factorization is more
vulnerable to noise than the original single-body factorization. The reason is the fact
that unlike the single-body case we cannot assume the rank of the observation matrix
beforehand and are looking at subspaces of much higher dimensions, like 6, 9, and
so on. The power of the observation is distributed into the axes of smaller singular
values as well. The subspace of smaller singular values tends to be less stable, and
that is the reason why probably it is less robust.

A. Blake (Department of Engineering Science, University of Oxford, UK ). I also
want to comment on the multibody factorization. Professor Kanade quickly dismissed
the idea of looking at quadruples of points and testing for ‘rank 3ness’. I didn’t quite
understand why. That would have quartic complexity which is presumably not as
bad as the exponential you would have if you’re looking at all permutations of the
matrix.

T. Kanade. Certainly in the presentation I over-simplified the problem. Nonetheless,
the sequential method in which you test the rank 3ness has a fundamental problem.
That is threshold. You have to have a threshold in the criterion by which you decide
to include or not to include a vector into the existing subspace as you go. On the
other hand, our method of block-diagonalizing the Q matrix itself does not require
a threshold. We can then decide the final group for which we need a threshold, but
the decision of the final grouping can be done after knowing all possible options that
you can have.

A. Blake. But surely all possible combinations can be tested more cheaply than
looking at all the permutations of the measurement basis?

T. Kanade. Of course, the block diagonalization with noise is rather an arbitrary
decision, since in an extreme case you can think of an n×n matrix either as one block
of the whole matrix or all the way to n blocks of diagonal elements. In our method,
however, as long as the number of objects is not extraordinary large, the shuffled
Q provides an overall global cue for detecting block diagonalness. One can actually
implement a global decision criteria to make the final decision in conjunction with
the rank property of the measurement matrix. I think this is the big advantage. It
stems from the very advantage of factorization itself; that is, don’t commit too early
and delay the decision to the end until all the information is folded into to recover a
potential structure.
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R. I. Hartley (GE Corporate Research and Development, NY, USA). In the flow
diagram Professor Kanade presented in his talk, it seemed that the perspective solu-
tion was just finding a projective reconstruction rather than a metric reconstruction.
Is that true of any of the others, such as the lines? Is that finding an affine recon-
struction, or something like that?

T. Kanade. We can develop and have developed what we call metric constraints on
M for scaled orthography and paraperspective cases, which is necessary for Euclidean
recovery. For the perspective case, once perspective depths are recovered, the similar
or actually the same metric constraints as orthography should do. For line-based
factorization we also can develop metric constraints for Euclidean recovery.
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